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Abstract. The nonequilibrium behaviour in the transient regime of metals excited by ultrashort
optical pulses is investigated by means of a second order expansion of the Boltzmann equation.
By definition, the transition range is located between the time necessary for the establishment of
the electron temperature and the time where a description by the standard steady state equations is
justified. Relaxation functions are derived for the electrical and thermal currents, and the relaxation
times related to them are determined. It is shown that for the electrical transport the relaxation
time corresponds to Drude’s momentum scattering time whereas the corresponding time for the
heat flow is identified as the electron temperature relaxation time. Further, expressions for the
electrical and thermal conductivity are obtained in the case of a local thermal nonequilibrium
between the electron and phonon subsystems in first and second order, respectively. Consequences
for the determination of the temperature distributions inside metals are discussed. The solution of
the Boltzmann equation is also used for the calculation of the time dependent energy distribution
function of the electrons. The results are in good agreement with the experiment.

1. Introduction

In the past few years, the availability of lasers with a pulse duration well down into the
femtosecond range has opened a wide field for theoretical investigations and experimental
applications. For example, these new laser systems offer the possibility of structuring
exposed material with high precision and minimal thermal stress. This is closely related
to the appearance of new phenomena like the phase explosion or the existence of different
temperatures for the electrons and phonons.

In the transient region where a steady state does not yet exist, the standard equations for
the solid state lose their validity and have to be replaced by relaxation expressions governed
by characteristic times. Some of these equations and times are derived in section 3.

Shortlaser pulses usually possess high power densities and an electron may absorb energies
as high as some few eV between two scattering events. Consequently, the electron system can
be driven far out of equilibrium and, hence, a description of its properties by a first order
solution to the Boltzmann equation, still the standard approach in solid state physics, may
become inappropriate. In this case, the application of the Fermi-Dirac function even with
different temperatures for the electron and phonon subsystems may not be justified. One
way to handle this difficulty is to seek higher order solutions to the Boltzmann equation.
Section 4 is devoted to such a nonequilibrium approach. The consequences of nonequilibrium
are illustrated in some few examples: for the electronic energy distribution function and for
the thermal and electrical conductivity.
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2. Nonequilibrium electron distribution

We will investigate processes related to the absorption of pico- and subpicosecond laser
pulses in metals. For this reason, we separate the entire system into two subsystems.
The establishment of a state of equilibrium is achieved in each of the two systems with
different relaxation times, where, < t,,. Furthermore, it is reasonable to assume that

in most cases the phonon system does not change essentially during the interaction with
subpicosecond laser pulses, at least when the hierarchy of relaxation times meets the condition
Tee K Top K Tpp. While the phonon—phonon relaxation time in metals is always much
longer than the characteristic time for energy exchangethe second inequality,, can be
approximately of the same order of magnitude asf the coefficient for the energy exchange

is very large. Nevertheless, we can assume the establishment of a local electron temperature
after the duration of some,. This assumption will, however, introduce a lower limit of about

100 fs for the investigations following below.

During the interaction of a strong laser field with metals, electrons absorb photons and
transfer to states with the energy+ hw. As a result, a nonequilibrium distribution is gener-
ated. Aiming to describe such an electron subsystem we start from the Boltzmann equation.
For an electron gas interacting with laser radiation this kinetic equation may be written as

0f kD) kD it / PUE, OLFE, 1) — FE D]F —vG(fE, 1)
o1 o7 O

@)

where all terms, except the last one, keep their usual meaning. This additional term represents
the phonon-assisted absorption or emission of photons and is discussed in more detail below.

In our calculations we require that the following conditions are satisfied: (a) interband
transitions are excluded, (b) the skin effect is normal and (c) the relaxation of the electron
distribution is due to electron—electron and electron—phonon collisions. That means we
consider a free electron system at not too low temperature and exclude additional scattering
processes as caused, for example, by magnons.

3. Relaxation functions

Since we are mainly interested in the physics that occurs on short time scales we have to go,
as mentioned above, beyond the steady state approach presented in most text books on solid
state physics. For that purpose we introduce relaxation functions for the currents and calculate
their characteristic relaxation times.

For times much larger than the corresponding relaxation times the derived equations must
meet, of course, the standard steady state expressions such as the Fourier law for the heat flow
Jjo and Ohm’s law for the electrical currepit It depends, therefore, strongly on the ratio of
the relaxation time belonging to the investigated quantity over the typical process time whether
arelaxation function is necessary or not. Thatis, we have to compare in this paper the duration
of the laser pulse with the distinct relaxation times. Since the latter can be different by orders
of magnitude for various processes in the same material one has to check this condition for
any physical quantity considered. This will be done in the next section for the electrical and
thermal current.
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3.1. Electrical current

Multiplying equation (1) by the product of the electronic charge times the velocity and
integrating over the wave vector yields

Lf k1) - LAf k1) - = Ak, T) -
—e/vf( )dk—e/‘vzf(—q)dk+e2/v2E&dk
ot or 0E

= —e // Pk K, OIfK, 1) — f(k, t)]dl?dl?+ev/§G(f(l€, ndk.  (2)

Let us examine the integrals in equation (2) step by step. The first one gives simply
Lofk 1) - 3 [ .~ -

—e/vf( )dk=——/evf(k,t)dk= J

at at ot

For the evaluation of the second integral we have to repfaéer) in the usual manner of
perturbation theory by the Fermi—Dirac distribution (Ashcroft and Mermin 1976). Then we
can integrate by parts using the property thigt, r) vanishes at = +oo much faster than

the energy can increase when the wave vector tends toward infinity. Considering the explicit
time dependence of the temperature containefd ine get an additional term. The evaluation
yields

_6/523f(/i, 1) 4 = e/ V(E — w)(WVT +T) dfo(k)
ar T 0E
_ e/' (E — W@VT +T) dfo(k)

T Rok

_ _E/ [(M " 172>VT " ﬁ}fo(/}’) 0 = — S [F2VT (3.2)
T m T

where the integrals containing (— ) andv, respectively, vanish.
To calculate the third integral we assume here and in the following a constant effective
mass and then find after integration by parts

(3.1)

dk

dk

k1) - - - .
62/528.1‘( 1) dk E = f(k ndk E = ——"E (3.3)
0E m

wherer is the electron density.
Utilizing the property of detailed balance for the scattering rates one can rewrite the fourth
integral as

f(’

Jo

dk

ff P K ) fF(K, 1) dk dk = —e/vfo(k)dk/P(k K1)

/‘é 1
—e >
¢k, 1)

where thek’-integration over the transition rate was replaced by a relaxation difhe).
The final expression, however, turns out to be zero since the current vanishes in the case of
equilibrium if we assume a lifetime independentof

The fifth integration is straightforward and results in

// Pk Kk, 1) f(k, t)dk/dk—e/vf(k 1) dk = — /Bf(lé, 1) dk = —ife
g(k 1) T, T
(3.5)

-0 (3.4)

)

where the relaxation time has been approximated by a constant.
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Expanding the operata® (f [k, ¢]) into a series of increasing numbers of multiphoton
absorption and emission processes, respectively, and taking, for example, only the lowest
order, we obtain

ev/aG(f(ié, 1)) dk = %/aa—gc(f(/}’, 1) di

~ % /[fo(E +hw,t) — fo(E,t) + H(E — ho)(fo(E — hw, t)

— fo(E,0))]dE =0 (3.6)

where H (x) is the Heaviside step function. The same will, of course, happen also for the
higher order terms.

Section 4 below contains a more detailed treatment of this part of the nonequilibrium
distribution (see especially equation (20)).

With equations (3.1)—(3.6), inserted into equation (2) and multiplied.byve arrive at
the sought relaxation function for the electrical current

afe - ne?t, - ez, -2
T YJe=——E— ——(")VT. (4)
Since the term proportional to the electric field exceeds the second one by a factor of order
(n/kpT)?, we can ignore the thermoelectric contribution and directly compare the right hand
side of equation (4) with the Drude form of the electrical conductivity. This way we realize
that the relaxation time of the electrical current can be identified with Drude’s momentum
scattering time, i.e3, = 7. Consequently, after some few times steady state behaviour
is established. Using experimental data for the specific resistivity, the number of conduction
electrons and the free electron mass an estimate for gives values between some few
and some tens of femtoseconds at room temperature (Ashcroft and Mermin 1976). A more
accurate determination can be achieved by a band structure calculatioyvof.;, (Allen
et al 1986) or by using the ‘exact’ high temperature expression (Pinski and Allen 1981) (in
practice, evel’ > ®p may be enough)
-, 5)
ZHkBTphA,r

with A, as the transport electron—phonon coupling constant. In most ¢asesan be
replaced by the usual electron—phonon coupling congtamtithough equation (5) is a good
approximation in many situations, it should be borne in mind that the observed resistivity
depends on both the electron—phonon and the electron—electron collisions. Equation (5),
however, covers only the former mechanism. These distinctions will become clearer in
section 4 where we will give a sketch of the derivation of the thermal conductivity for the
general case of nonequilibrium between the electrons and phonons.

Te

3.2. Thermal current

In order to repeat the calculation in view of the thermal current one has to multiply equation (1)
by the product of the energy differencg ¢ 1) times the velocity

/a(E_M)wdh/ﬁz@_maf(l;w dl—(»_e/EZ(E_H)E_af(k,t) .

3 JE
- // VE — WPk K, D[fK, 1) — fk, 1)]dk dk

—v / U(E — WG(f(k, 1)) dk. (6)
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The first integration is similar to Eqg. (3.1) and we get immediately the thermal analogy

af(k, j
/(E AL f( D 4 =—/v<E W f & ndi = 22 Jo. (7.1)

Again, due to the lack of knowledge of the temperature dependengéof), we replace it
in the next integral by the equilibrium distribution and obtain

/[E(,;)_ 77 f( " fo(E)

/ (E(k) u) @VT +T) 0fo(E) o
IE (k)
/ (E(k) — u) @VT +1)19E®K) dfo(E) -
T ook 0E()
_ / { 2[E(k) — u](vvr +1)., (ER) - w)’VT }

— WEVT + D]

T Tm fo(E) dk

— {<E2>° - ZT(E>°”+”“2}VT - {—(EZ)TO - “Z}VT. (7.2)
m m

It should be noted that in the case of a local thermal nonequilibrium the tempeTratafers
to the temperature of the electrons and not to that of the phonons.

Since the difference of the mean energy and the Fermi enéfgy;- ., calculated by
means off (k, t) is not necessarily zero as in equation (3.2) one obtains for the thermoelectric
contribution

—e/BZ(E— f(k )dkE——ef W(E — E)f(kt)dkE
Rok

=e/ |:172+(Em—m}f(k,t)dk2=e[<ﬁz)+<E>—_M]E. (7.3)

m

Because the thermal current is also zero in the equilibrium the next integral vanishes in analogy
with equation (3.4) if we make the same substitutions:

//[E(l?) —uW]oP®& . k) f (&, 1) dk dk
f&,

o(k

/ [EG) — 15 fol®) IR / PR\ 1)

- .1
E®) — u]v - -0 7.4
f[ ¢k, 1) (7:4)

For the calculation of the fifth integral it is convenient to separate off the integrationkover
and then to define a relaxation time for the heat flow, such that

—//[E(ié) — WP k) f(k, 1) dk dk’ = —/[E(/E) — Wl f(k, t)dl?/P(l?,l?, 1) dik’

)

_ % k, =_-= k k,
/[E() 1T £ I)S(k - /[E() W5 F & 1)

_ 1. 75
_CQJQ (7.5)
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To make the calculation of the last term containing the phonon-assisted photon processes as
simple as possible we again restrict ourselves to the lowest order, as in equation (3.6)

— / B(E — WG (&, 1) = —v / 3(E — W) fo(E +Tiw) — fo(E)
+H(E — Tw)[ fo(E — Tiw) — fo(E)]} dk
1 _
~ v{ / Z(E — 1) fo(E +T) — folE)

+H(E — ho)[ fo(E — ho) — fo(E)]} dE} =0. (7.6)

The vanishing of the whole expression can be most easily seen by a transformafieivos
into E’ followed by a subdivision of the integrand int6’(— 1) andw.

The differential equation of the thermal current is obtained immediately if one inserts the
solutions (7.1)—(7.6) into equation (6) and then multiplies the whole equatiep by

7 . E2yo — 42
ang—[Q +jo= —TQ%O—TMVT (8)

where we have neglected the small contribution of equation (7.3). This is no restriction for
s-polarized waves or for laser radiation parallel to the normal of the surface because in both
cases the electric field is perpendicular to the heat flow and, therefore, cannot contribute.

Forthe determination of the relaxation timyg we match the right hand side of equation (8)
with the Fourier law. Within the framework of Eliashberg’s theory the high temperature thermal
resistivity ' > ®p) can be written as an integral involving the coupling functiciF ()
(Grimvall 1986)

1 3 Smax 2F(Q 3mA
- = m_2/ dpd ) _ SmA (9)
A wkghn Jq Q wkghn
From equations (8) and (9) we obtain foy
T, T, hk
m - Twhkpn (10)

T B, — 2 T (B2 — 42 3A
where we stress by the additional indekthat T belongs to the electron subsystem. After
rewriting, in the high? limit the mean square of the energy density stored in the electron
system is given by

(E%)o— p? = nﬁ% / dQ &’ F(Q)Q = nh?(Q?). (12)

After insertion of equations (10) and (11) into (8) we finally find that the relaxation time of
the heat flow corresponds to the electron temperature relaxation time

wkpy.T, c.(Te) . (12)

TN e
first derived by Allen (1987). The amount of the relaxation tirgeis primarily determined
by the coefficient of the heat exchanfgg. This important quantity manifests the interaction
between the electron and phonon subsystems. It depends on the coefficient of the specific heat
ofthe electrong,, the electron—phonon coupling constanglso called the mass enhancement
coefficient, and the averaged square of the phonon frequency. The present definition of the
relaxation timer, differs from Maurer’s (1969) derivation especially by the temperature
dependence. In his theory it is inversely proportional to the temperature. The difference
can be traced back to the treatment of the electron system. In Maurer’s approach, there is no
coupling to the phonons and the relaxation takes place only in the electron system.
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For the differential function of the thermal currentit follows by substitution of equation (10)
into equation (8)
o -
rQ% +jp = —AVT. (13)
This is known as the Maxwell-Cattaneo equation (Joseph and Preziosi 1989). Considering
the integral version of equation (13)

o 1 ! ,
Jo(t) = ——/ e~/ v (') di’ (14)
‘L'Q — 00

we recognize that the heat flow described by equations (13) or (14) is nonlocal in time. Both
expressions state that the heat flow at timeonsists of the sum of flows at earlier times
weighted by an exponential that accounts for temperature relaxation caused by the coupling to
the phonon bath. Itis worth noting that in the limit of vanishing relaxation time both converge
into Fourier’s law. From this we can conclude that the Fourier law is well defingdid much
smaller than any time relevant for the process. On the other hand, an arbitrarily small time
constant is certainly unphysical since a many-body property like the heat flow needs a finite
period of time for its development.

The generalized equation for the heat flow in the electron system, equation (14), forms the
basis of the extended two-temperature model (ETTM)t{ier and Rohr 1996, 1998) whereas
the phonons are taken into account in the usual manner as, e.g., in the two-temperature model
(TTM) (Anisimov et al 1974). On short time scales, in the orderrgf both models predict
completely different behaviour. In the ETTM the electron temperature possesses a damped
wavelike behaviour in contrast to the diffusive one expected by the TTM. In thin films, however,
also the phonon temperature can display a nondiffusive distribution due to the time evolution
of the spatially varying electron temperature caused by the back scattering of the temperature
wave from the rear side.

Depending on the magnitude of the coefficient of electron—phonon energy exchange, the
time zo can be much larger than the momentum relaxation tinegen for7, = T,,. For a
crude estimate we combine equations (5) and (12) to

t9  2mkT? o T?

T 32 0?
where(Q?) can be approximated in the Debye model%@%. As can be seen from table 1,
the values ot calculated by the simple equation (15) with= t;, are not far away, perhaps
except for Sn and Pb, from those evaluated by the more sophisticated equation (12).

Although the differential equations for the electrical and thermal current possess the same
mathematical structure we conclude from the relaxation times listed in table 1 that one must

(15)

Table 1. Relaxation times for the heat flow as calculated from equations (12) and (15), respectively,
at 7 = 300 K; also given is the Drude scattering time, the Debye temperature and the coefficient
of electron—phonon energy exchange.

Metal t(300K)(fs) ©p (K) hex GWemm3K™Y) 15 (fs) (12) 1o (fs) (15)

In 3.5 112 87 357 297
Sn 21 170 145 227 78
Pb 13 88 122 393 180
Nb 4.0 277 2912 74 56
Ag 36.8 215 25 780 859

Au 27.6 170 26 784 1030
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Table 2. The theoretical coefficient of heat exchange as calculated by equation (12) with the values
from columns 2, 4 and 5; the fitted values result from columns 2 and 3. Daja &oe taken from
Ashcroft and Mermin (1976); the other values from Brorstial (1990) if not otherwise stated.

Ve X 10°° A<w2>fit hex,_fit Nex theo.
Metal (JenmBK=2) (meV?) Ajir, Carm (GWem3K1 (GWem3K1
Au 6.7 23 0.15 178 26 30
Ag 6.5 0.12 344 35 46
Cu 9.7 29 0.10 377 94 123
Nb 71.7 320 1.04 275 3888 3475
Pb 16.0 45 1.55 31 122 130
Ti 8.5 350 0.54 601 1207 1711
\Y 117.7 280 0.82 352 5571 5741
w 13.7 112 0.26 425 259 256

aAllen (1987).
b (0?) = 0.5(w?).
¢ Groenevelckt al (1990).

use equation (13) for a description of short time experiments in the thermal case whereas the
steady state approximatiop= o E, should usually be sufficient in the electrical one.

This is an important outcome since equation (13) leads to a hyperbolic differential equation
for the electron temperature with the above discussed wavelike properties in contrast to the
diffusive nature of the often used two-temperature model.

As a consequence, the experimental determination of the coefficient of heat exchange
should not be based on fitting the measured electron temperature to the TTM but to a solution
of the hyperbolic equation of heat conduction (HHCE). Since both approaches formally agree
in the limit of 7, equal to zero one expects different values, especially for metals with small
coefficient of heat exchange or largg. Physically speaking the TTM would postulate a faster
heat transport than the ETTM. Consequently, the fitting of the experimental temperature data
to a solution of the TTM could be leading to too small coefficients of heat exchange. This
conjecture is supported by comparing the theoretical values evaluated by means of equation (12)
with the experimental ones fitted to the electron temperature calculated by means of the TTM
(Brorsonet al 1990) in table 2.

Before concluding this section we have yet to discuss an important point. The statement
above, that the ETTM merges with the TTM in the limitgf equal to zero, is not quite correct.

The timet, can vanish if either the electronic specific heat is zero or the coefficient of heat
exchange becomes extremely large. The first possibility is obviously unphysical because an
electron gas cannot be heated up if the coefficient of specific heat is zero. On the other hand,
the second possibility implies that the coupling strength between the electron and phonon
subsystems tends to infinity but then both systems have the same common temperature at any
time. Consequently, a consideration of two temperatures becomes meaningless and, hence,
the two-temperature model as well. In this respect, Fourier's law together with the energy
balance would manifest the entire physics and the calculation of the temperature distribution
(T, = Tpn = T) could be done by standard methods (Carslaw @uy@d1959). As a result

the reduction of the ETTM to the TTM by taking the temperature dependent relaxation time
7o equal to zero is not possible, for physical reasons, in a strict sense.

Furthermore, it is worthwhile noting that the temperature dependence of the theoretically
derivedry as predicted in equation (12) is supported also by the experiments (Schatmlkin
1987) for not too high intensities. Necessary corrections for high values were introduced and
discussed for gold in Wangt al (1994).



Nonequilibrium behaviour in transient regime 6765
4. Solution of the Boltzmann equation and thermal conductivity

Itis well known that first order solutions of the Boltzmann equation are restricted to the physics
near the equilibrium. Accordingly, only steady state properties can be deduced. Here we are
interested especially in the interaction of short laser pulses with metals where a steady state
behaviour cannot be assumadriori. Hence, in this section we investigate the transient
regime and deal, for this reason, first with a perturbation treatment of the Boltzmann equation
up to the second order.

This will be followed by a discussion of the nonequilibrium distribution function with
special regard to the role of the photon operaigy’). In conclusion, based on the derived
nonequilibrium distribution function the thermal and electrical conductivities are calculated.

4.1. Solution of the Boltzmann equation

We seek a solution of equation (1) by expandjhimto a power series for the small parameter,
p = vt, defined by

I(t)t
nhwd
wherel (¢) is a time-dependent laser intensity and the optical absorption depth. Physically
speakingp is an estimate of the number of photons absorbed between two scattering events.
Sincep must be smaller than unity our approach is restricted to not too high intensities. This
condition means that the deviation of the electron distribution from the equilibrium as caused
by laser-induced processes is relatively small and that, for this reason, one can consider the
light action as a perturbation. The expansion reads

pt) =v()T = (16)

f=)_0"fu=forpfrtpfat- (17)
n=0

where the unperturbed payt corresponds to the Fermi—Dirac function that governs the
electrons before the interaction starts. By insertion of equation (17) into equation (1) and
by using the relaxation time approximation we find listed in increasing ordgifof the first

order terms

af1

. - 9
s+ @VT +1) fo _ _Ph

afo -
3T eanE =—= vG (fo) (18)
and for the second order ones

pdfi  _=pdfi  pPf

op ~VES = —vG(f) (19)

where we have again taken into account in equations (18) and (19) the explicit time dependence
of the local temperature. Before one can integrate the distribution functions it is necessary
to specify the expressionG (f). This function was introduced in Zinoviev (1980) for the
description of the photoemission of electrons as a result of the irradiation of metals with short
laser pulses. To this end, the authors have been required that the laser pulse length is much
longer than the scattering time of the electrons. In practige; 100 fs should be long
enough. That corresponds to our supposed lower boundary necessary for the establishment of
the temperature. Under these conditions they derived for a Gaussian temporal profile

00 GlAr P I

rG(f) = Z [Ioe——T] [fo(E +hw) — fo(E) + H(E — hw)(fo(E — hw) — fo(E))]*

~ nhwé

0 R .
p2§ +@VT +T)

(20)
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with H (E —w) as the Heaviside step function to ensure the positiveness of the energy value. For
the sake of simplicity, we restrict ourselves to one-photon processed| in the following.
This approximation is justified by the dependence of the expansion pargmeténe intensity
Ip. Typical upper values ofy are of the order of 18-10"> W cm~2 where higher order
processes are not important yet.

Also using a Gaussian distribution fotz) integration of equation (18) yields

t ) S VT T afo
— gt/® dr’ /O — e Eqe i %12 _ (F — |5 + = -2
Ph /m {( e Emwlvrry OE

+1g e“’z/ff)G(fo)} (21)

in which the notations of the explicit time dependences of the electron temperature and the
scattering time are omitted for brevity. The abbreviatigriollows from equation (16) when

I (¢) is replaced byl. Providedr; > 7, itis allowed to extract from the integral as constants
those terms that vary slowly with the time, i.e., the Gauss functions, the temperature and its
gradient. These conclusions resultfrom the fact that electron temperature cannotincrease faster
than the laser intensity. This is not true for the time derivative of the temperature which may be

a rapid function of time. Nevertheless, integrals containing the derivative of the temperature
with respect of time vanish if the conditian > t is fulfilled. This can be easily seen when

we integrate by parts

t 2 /
f e/ IT(ydi' = eV T(r) — / 0 L@ g
oo T

t
~ / 1
=T~ T () f e/ di’ = 0. (22)
oo T

With the abbreviatiorpy = vot we finally obtain for the first order termyf;

etvEy . . VT 9
Ph= _{ﬁ D 4 (E ’“”T}(_ a_@ +poe G () (23.)
using a time-independent relaxation time.

The next order is obtained by insertion of equation (23.1) into equation (19)

P2 fy = _ef(t/r)/ dr’ e(z'/r){5VT(3(Pf1)> B eﬁE(a(pfl)> G e(’/z/ff)(pfl)}.

e aT IE
(23.2)

In the general case, due to the energy and temperature dependence of the relaxation time
the solution of the integral becomes rather long. It is therefore more convenient to calculate
only the terms relevant for a special investigated problem. For example, the electric currentis
proportional to_ vf and, therefore, terms containing odd powers @nish upon integration

over thek-space.

We will now apply the solutions (23.1) and (23.2) to some special problems. As a first
one, we investigate the energy relaxation of the nonequilibrium electron distribution. In the
case of one-photon processes we obtain for this distribution function from equations (17) and
(23.1)

F(E) = fo(E) + 1o “T™D{fo(E +Trw) — fo(E) + H(E — )| fo(E — hiw) — fo(E)]}

(24)
where the relaxation time is not yet specified. Under the interaction with a laser field the
electrons are excited to states above the Fermi energy with rougshly hw. Under the
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Figure 1. Experimental electron energy distribution function taken from Fetrai (1992)

random phase approximation of the Fermi-liquid theory the lifetime of a nonthermal electron
due to both elastic and inelastic electron—electron collisions is given by (Pines and Nozieres
1966)

= ot = B4 2T (eV) + [E — 1ol® (25)

e

whereg (Parkinset al 1981) is an experimental parameter. Under usual conditions when the
intensity is not very low, especially the electron temperature changes considerably during the
duration of the laser pulse and can be strongly time dependent. Nevertheless, it is justified
to assume that the scattering time is not explicitly time dependent as can be seen from the
following conservative estimate. Neglecting any time delay of the electron temperature and
assuming an exponential increa%g—= To exp(t /L), we obtain

0T, dat, 07T, 213 21,

— = =— <— <1

ot 0T, ot rTrL TL
in agreement with our lower boundary.

The time evolution of the distribution function of a thin gold film was measured by Fann
et al (1992). Figure 1 shows their data for a fluence of 3@cnT 2 at a photon energy of
1.84 eV and a pulse length of = 180 fs. The theoretical curves in figure 2 are calculated
from equations (24) and (25) with the same data as used in the experiment and show a satisfying
agreement.
It should be noted that our explanation of the time dependence of the relaxation of the

nonequilibrium energy distribution is more general than that proposed bydtaii(1992).
In their model, the electron distribution function is divided into thermal and nonthermalized
parts. A solution is given for the latter by assuming an unknown nascent distribution under the
additional approximation of instantaneous excitatiom at 0 fs. Further, the temperature
dependence of the scattering time is neglected. For the Gaussian laser function of our
approach, a solution is derived for the complete electron system characterized by an energy
and temperature dependent scattering time. In addition, the time dependence of the electron
temperature at the surface was calculated by means of the ETTM for a 30 A Au film. As
can be seen in figure 3, a second temperature increase appears after around 0.5 ps due to the
hyperbolic equation and the concomitant reflection of the temperature wave from the rear side.
We are not able to decide here whether the differences between the temperature at longer times
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Figure 3. Electron surface temperature as a function of time for an Au film with thickness of

are coming from a weakness of the ETTM model or whether they could be traced back to the
relatively large experimental uncertainty of 30% in the absorbed fluence.

The corresponding change of the phonon temperature, not plotted herg;, &Kiflom
T = 300 to 309 K at = 1 ps in agreement with the experimental finding of Groenegtll
(1990).

An unambiguous resolution of such a wavelike property (figure 3) is not possible by a
pump and probe experiment due to the unavoidable spatial and temporal averaging. We can,
however, interpret the maximum of the electron temperature=a400 fs in their fit, i.e., long
after the laser pulse, as an indication. Such behaviour cannot occur in a diffusive model, for
example, the TTM.

Since the choice of time= 0 fs is somewhat arbitrary we have selected it in such a way
that the ratio of the calculated temperaturesat0 fs andr = 130 fs is roughly the same as
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the ratio of the values found in the experiment. That is; O fs in figure 2 corresponds to
t = 100 fs in figure 3.

In a second example, we use our nonequilibrium distribution function for a short derivation
of the thermal conductivity. A more detailed treatment based, however, only on the first order
term, equation (23.1), but including the thermoelectric contributions is reporteditime
(1998).

The heat flow is defined by = —AVT if the thermal gradient is a well defined quantity.
This depends on the condition that the mean free path is much smaller than the characteristic
length of the thermal gradient, i.e.,,;, <« T/|VT|. This may be not valid in the case of
short laser pulses. Nevertheless, in the following we assume that the condition is fulfilled.
Furthermore, we take into account that, on short time scales, the electron temperature can be
much higher than the phonon temperature and expand, therefore, the chemical potential as a
function of the electron temperature up to the second order. Under these circumstances the
thermal conductivity reads

h==) (E—ul[TDhif (V)™ (26)

with w(T) = uo[l — (72/12)x% — (77*/360)x*] (Ashcroft and Mermin 1976, p 47) and

x = T,/uuo Wherepug is the chemical potential at zero kelvin. For a heat flow perpendicular to
the surface, an approximation especially appropriate for short laser pulses as shown by many
authors, we obtain from equation (23.1) for laser radiation parallel to the surface normal

_ 2
=3 wyzr(& T, T,,,,)( — g—];’) 27)

The inverse of the transport scattering timér, T,, Tl,h)*l consists of the sum of the
electron—phonon scattering rate and of the electron—electron one. Using equation (25) we
can write for it

= r;hl + re__le = r;,} + r{l + tbfl = rpjll + 4n2ﬂT€2 +B(E — )2 (28)

Its explicit form can be rewritten as
Tph(Tph)

1+z(Te, Tph) + Tph(Tph),B(E - M(Te))z
where the functiorz(7,, T},;) is defined by the ratio of the electron—phonon scattering time
over the temperature dependent part of the electron—electron scattering time
Tph (Tph)

7 (T,)
Converting the sum into an integral and using the free electron density of states we obtain after
integration

U T, { TP 1 [712762+ 7nT;‘“ (31)
LR A+ 2(Te, Top)) VG L2443 24048

where the conductivityr,r¢ is related to the case of local thermal equilibrium, i.e.,
T, = Ty, = T. It contains only the electron—phonon scattering and reads

T(Es Tes Tph) = (29)

«T,, Tpp) = = 4n?BTZ(eV)Tn(Tyn). (30)

21,2
opm kg Ty
A =— 2 £ 32
LTE 302 (32)
The functionG(T,) is defined by
2k2T2 7 4k4T4
G(T)=1- "8 7 %57 (33)

1202 36048
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Equation (32) is, of course, nothing other than the Wiedemann—Franz law with the dc electrical
conductivity.

When local thermal equilibrium can be assumed t&f,) = 1, sincepuy is typically
of the order of some ten thousands of kelvin, andecomes similar but not identical to the
standard expression= A, rg. Nevertheless, even in this case the correction du€fto 7,,)
may not be negligible depending on the absolute valyg & can be seen in figure 4.

The second order term of the Boltzmann equation, equation (23.2), is handled in the same
way. One can greatly reduce the evaluation of this expression by formally interchanging the
time integration with the integration over thespace and observing that after multiplication
with the velocity only even powers can contribute. Taking this into account we find for the
distribution function

- 0
g2 = 2t°0WVTG <3_);?) . (34)

Insertion into equation (27) leads to the second order correction

2 — 1 —
T S R (R G

e oE
Afo(E —pto 2 dfo(E — u
+E —p+to)?| - ———— ) —2[E — —— ). (35
16— (= LEIELY g ppp(( - (@)
After a straightforward but cumbersome computation one obtains,for
VG(T,) tho/wo

7 4,7 2272
|:N(Te, Ty ) + zhw . TnzhwksT, i|

1200 12043
tho  Tnzhwk3T? ]
1200 12043

T, ..
Ay =7 —2po(Th,w,r){
T, 4 N(T,, Ty, )3

NG(T) —ho/po
N(Tea Tph» w)S

I:N(Tev Tphv w) -

72 ( 1 . 1 )
N(T,, Tpp, ©)>\ J/G(T,) +ho/uo /G(T,) —ho/no
[k,% T? T2k} T€4:| 1
+ J—

24uf  120ug | VG(T)A +2(To, Tyn))?

|: ho  m2k3T?  Tnks Tf]}
X| —+ +
210 48u3 48013

where G(T,) was introduced in equation (33) and the abbreviatM(T,, 7,,, w) has the
following meaning

(36)

Z(Tea Tph)ﬁzw2
A2k2 T2
Furthermore, we have rewritten (¢) with the aim of extracting the expression from the energy

integral by multiplying the numerator and the denominatot fjy respectively. It then reads

N(T., Tpha w) =1+z(T, Tph) + (37)

R Iotpp _(t—1,)2/ 22
=v({)Ty,, = ——¢€ L /TL. 38
Po ( ) ph nhws ( )

It is worthwhile noting that., is explicitly dependent on the photon frequency and on the
time and not merely implicitly from the latter due To(z) and 7, (¢) like A1 andi.rg. The
contribution of, to the thermal conductivity is effected by the magnitude of the laser intensity
which, however, is subjected to some restriction in our model caused by the necessary smallness
of the expansion parameter
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Figure 4. Thermal conductivity of Au for the case of nonlocal thermal equilibrium at fixed
T,, = 300 K: solid upper curve + 17, dashed curve equation (39), dashed—dotted curvand
for the local thermal equilibriurii, = T}, = T solid curvery, dotted curve.; 7 ¢, ¢ experimental

data taken from Weast (1982); for the laser parameter used cf text.

In figure 4 are shown plots of the complete thermal conductivity arig &r gold in the
standard way, that is as a function of the temperature, as well as in the case of nonlocal thermal
equilibrium at a fixed temperature @}, = 300 K, and forT, = T,, = T evaluated for the
fluenceF = 50 mJ cnt?, t, = 500 fs,w = 1 eV andB = 2.4 x 10 s eV-2. Although
the assumed constancy of the phonon temperature is only an approximation it is not a strong
restriction as mentioned above.

Additionally the often used expression for the dependence of thermal conductivity on the
electron temperature is plotted

MT,) = AOE (39)
To
where Ty is an arbitrary reference temperature. Although this approximation results from

equation (31) for « 1 andkpT, < uo it has to be used with care since already at fairly low
electron temperatures, for gold about 2000 K, the true behaviour is completely different. By
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Figure 5. Thermal conductivity of Au as a function of time: solid curve+ 1,, dashed—dotted
curve only the expression in front of the opening curly bracket in equation (31), dottedicyrve
dashed curve equation (39).

further increasing the electron temperature the thermal conductivity starts decreasing roughly
inversely proportional td, instead of pursuing the postulated linear dependence. Without
doubt, such changed behaviour must have consequences on the calculations of the electron
and phonon temperature distribution in metals irrespective of the model selected (ETTM or
TTM). Since the thermal diffusivity, the ratio of the thermal conductivity over the electronic
specific heat, and, therefore, the transport of the heat inside the metal is reduced at higher
temperatures one anticipates an increase of the temperatures to higher values near the surface.
Work in this direction is in progress and will be reported elsewhere.

Due to the explicit time dependence Xof it cannot be correctly described as a simple
function of the temperature. With the aim to give at least an estimate of its contribution we
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Figure 6. Temperature of the electrons at the surface calculated by means of the ETTM: with the
main part of equation (31) (solid curve) (see text) and witfiven by equation (39) (dashed curve).

have set the time equal to the laser pulse length for an evaluation. This approach is
justified by figure 5 where the thermal conductivity is given as a function of time. To find
these curves we have determined with the above parameters the approximate time dependence
of electron and phonon temperature at the surface by means of our ETTM and used these data
as the input quantities for the calculation of the conductivities. This is not a completely self-
consistent evaluation since only the main paitgthe expression in front of the opening curly
bracket in equation (31), was taken into account in the temperature calculation. Figures 6 and
7 present the used electron and phonon temperatures as a function of time. As expected, for
the case of linear temperature dependence of the thermal conductivity the electron temperature
reaches lower values and decreases faster than for the more exact expression. The phonon
temperature seems to be opposite but this is caused by the assumed constancy of the coefficient
of heat exchange. Taking into account the above mentioned correctiby) farhigh electron
temperatures we would find, reduced by a factor of 2-3 (Wareg al 1994) and, therefore,

some slightly faster relaxation. We have not done this in the calculation of figures 6 and 7
because both the coefficient of heat exchange and the coefficient of the specific heat of the
electrons have to be modified in the ETTM. To be consistent, one has to do this from the
beginning and not in the final formula. Such extensions would, however, require a complete
recalculation of the ETTM.

Concluding this section, we discuss the consequences of the different electron and phonon
temperatures on the frequency dependent electrical conductivity. This point is especially
significant for the calculation of the optical properties of metalgt{irer 1994, 1995). Using
equation (17) the electrical current is given by

Je=0E=—eY ilfo+pfi+pfil. (40)
Restricting to the first order term and taking into account that odd powers of the velocity vanish
we obtain from equation (23.1) for the current

e 1726‘5 =, i 2/9.2 afo vT 8f0
=S U Feetere b _U0) L NN g - it = 20). (a1
J e;(l—la)r) 0 5 ) T E-wPT( —5F (41)

Since both the electron—phonon and electron—electron scattering processes contribute to
the specific resistivity we have to insert for the scattering time the expression supplied by
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Figure 7. Temperature of the phonons at the surface calculated by means of the ETTM: with the
main part of equation (31) (solid curve) (see text) and witfiven by equation (39) (dashed curve).

equation (29). From this it follows directly for the frequency dependent conductivity

=2

o(w, T, Tth 1) = ez e_(IZ/ZTLZ) Z];: m( B g_f£> (42)
where we have omitted the thermoelectric part by using the same points as discussed in the
thermal case in the context of equation (26). It can be shown that the correction due to the
temperature dependence of the chemical potential is smaller for the electrical conductivity
compared to the thermal one. For this reason, we approximate in what follows the Fermi
energy by its valueuo at zero temperature. Thus, in the free electron case we find after
integration over the angles and altering the variables ftdmE:

E.T,T, 9
7. T Typot) = 2L 0 [ ap VE G S <_ ﬁ) (43)
VIoTp [1-iot(E, T, T,]\ 9E

whereo is the Drude conductivity, that isp = ne’tp/m, andrp is the related scattering
time. To evaluate the integral we apply the Sommerfeld expansion and obtain for the complex
electrical conductivity

2k2T2 ZFC()ZTZ
T Ty 1) = opTe @D | (14 - = T 2B e g4+ D
o(w phy1) =0p 1+2) v 24,2 1+2)
2k2T2 r 2.2
+ier[1— N L ‘”D“ (44)
6(1+7z) 2416 6(1+2)
with the new abbreviation
1
I'= F(a), Tev Tph) = (45)

A +2(T,, Typ))2 + w?t3’

It is easy to verify that equation (44) turns into the familiar Drude expression for a stationary
electricfield inthe case of local thermal equilibrium and for nottoo high temperatures, thatis for
7z <« 1. Although the correction terms to the standard expression of the electrical conductivity
are of similar structure to those of the thermal one their quantitative contribution is smaller.
The reason for this behaviour can be found in the produgt that is much larger than unity
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Figure 8. Real part of the conductivity () of gold as a function of the frequency (eV) calculated
atr = 0; dotted and solid line equation (44) f@, = 300 K and7, = 10000 K and 3000 K,
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Figure 9. Imaginary part of the conductivity (3) of gold as a function of the frequency (eV)
calculated at = 0; dotted and solid line equation (44) fdp, = 300 K and7, = 10000 K and
3000 K, respectively,@) Drude’s theory.

for laser frequencies in the visible range and above. On the other hand, even small changes
of the complex conductivity can lead to significant corrections to the optical properties due to
the interlocked structures of the real and imaginary part that are involved. In figures 8 and 9,
a comparison between Drude’s conductivity and the first order modifications are plotted.

It is remarkable that the corrections to the real part are much larger than to the imaginary
one. This outcome agrees well with the experiment reported by Elsayeet-Ali(1991).
The authors found for gold films that in response to a fs laser pulse the imaginary part of the
dielectric function undergoes a significantly higher perturbation than the real one.

Taking into account the second order of the expansion, equation (23.2), one obtains
considerably stronger changes of the real and imaginary part. In this respect, the resulting
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expressions again depend explicitly on time and on the laser power through the expansion
parametepg. The equations belonging to them are rather long and will, therefore, be presented
in a separate paper together with the conclusions for the optical properties.

In conclusion of this section, we discuss the relationship between the electrical and thermal
conductivity known as the Wiedemann—Franz law

r=0TLg (46)

whereL is the Lorenz numbed, o = 3(kp/3e)?.

Regarding only the lowest order terms, equations (31) and (44), it becomes immediately
clear that they do not carry out such a simple relation because the electrical conductivity is time
dependent but the thermal one is not. This is not surprising since both currents are driven by
different forces. The electric field vanishes when the laser pulse is over; the thermal gradient,
of course, remains. In the static case, however, where the electron and phonon temperature
coincide we obtain

A~ e AH+z(T))

oT ~ (1+z(T)) opT
if only the leading terms were taken into account. That is the Wiedemann—Franz law keeps its
validity also at higher temperatures due to the mutual canceling of the correction teah (1 +
This is confirmed by accurate measurements of the Lorenz ratio of liquid metals (Ida and
Guthrie 1993).

(47)

5. Summary

In this paper we have investigated the nonequilibrium electron distribution in metals in the
transient regime by means of a second order expansion of the Boltzmann equation. By
definition the transition range is located between the time necessary for the establishment
of the electron temperature and the time where a description by the standard steady state
equations is justified. The lower time limit is estimated to be about 100 fs while the upper one
depends on the regarded physical property and therefore it can span a long time interval.

For the description of the electrical and thermal currents in the transition range we have
derived relaxation functions and calculated the relaxation times related to them. It was
shown that for the electrical transport the relaxation time corresponds to Drude’s momentum
scattering time. It is, for this reason, usually smaller than the lower time boundary of the
model. Consequently, the steady state equation (Ohm'’s law) is sufficient for the calculation of
the electrical conductivity and of related properties. Nevertheless, also Ohm’s law becomes
modified due to the local nonequilibrium between the electrons and phonons.

For the heat flow, however, the situation is completely different because it is governed by
the temperature relaxation time. This quantity is given by the ratio of the electronic specific
heat over the coefficient of energy exchange between the electron and phonon subsystems. For
metals with a strong electron—phonon coupling and a high Debye temperature this coefficient is
large and, consequently, the relaxation time is small. In the case of noble metals, for example,
the situation is opposite and the relaxation time can take on values as long as picoseconds.
If this happens the calculation of the electron temperature distribution must be based on the
hyperbolic differential equation and no longer on the parabolic one. As a consequence, the
spreading of the temperature loses its normal diffusive character and shows wavelike behaviour
damped by phonon emission. Furthermore, new effects can appear in thin films like spatial and
temporal modulations caused by the backscattering from the rear side. For applications it may
be important that higher temperatures near the surface result from the delay of the heat transport
in comparison with the diffusive description. This phenomenon is additionally amplified by
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the nonlinear temperature dependence of the electronic thermal conductivity that was at first
derived by Hittner (1998) and extended here to the second order corrections. Moreover, the
nonequilibrium energy distribution of the electrons in gold was evaluated during and after
the interaction with an fs laser pulse. The comparison with the experiment offers a good
agreement.

In conclusion, a closed theory is proposed for the treatment of the local thermal
nonequilibrium between the electron and phonon subsystems and for the transient behaviour of
electronic properties. This approach was successfully used for the calculation of the electrical
and thermal conductivity that now depend explicitly on the time and the laser frequency and
for the determination of the time evolution of the electron energy distribution.
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